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A B S T R A C T
Buildings account for nearly 40% of global energy consumption, making accurate load forecasting
critical for energy efficiency and decarbonisation efforts. This paper presents a comparative evaluation
of four machine learning models – Convolutional Neural Network (CNN), Bidirectional Long Short-
Term Memory (BiLSTM), Convolutional LSTM (ConvLSTM), and Light Gradient-Boosting Machine
(LightGBM) – for 24-hour ahead building electricity forecasting. Using the Building Data Genome
2 dataset comprising 20 diverse commercial buildings, we assess model performance across 𝑅2,
RMSE, MAE, and computational cost. LightGBM achieved the highest overall accuracy (𝑅2 = 0.627,
RMSE = 34.65 kWh), outperforming deep learning models in 80% of buildings, while BiLSTM
excelled on highly irregular or low-demand profiles. All models substantially improved upon naive
baselines, explaining over 60% of consumption variance. A composite score combining accuracy,
error, and training time identified LightGBM as the most balanced architecture for operational
deployment. These results highlight that gradient boosting offers a robust, scalable alternative to
deep sequence models, providing actionable insights for intelligent building management and energy
forecasting applications.

1. Introduction
Buildings account for roughly 36-40% of global energy

use and associated carbon emissions, making them a central
focus of decarbonisation efforts [2, 1, 15]. Accurate short-
term prediction of building electricity consumption supports
load-balancing, operational optimisation, and integration of
renewable energy that can be used to reduce a building’s
environmental footprint.

Traditional physics-based (white-box) simulators such as
EnergyPlus and TRNSYS provide interpretability, but require
detailed inputs and heavy computation. In contrast, data-
driven (black-box) models learn directly from historical data,
allowing scalable forecasting in diverse buildings [8, 16].
Recent advances in deep learning – particularly CNNs,
LSTMs, and their hybrids – have significantly improved
accuracy, while ensemble methods such as LightGBM offer
competitive results with lower computational cost [7].

This paper provides a unified and leak-free comparison
of CNN, BiLSTM, ConvLSTM, and LightGBM models on
the BDG2 dataset [12]. All models are trained with identi-
cal preprocessing, features, and evaluation metrics (RMSE,
𝑅2, CV-RMSE). The study benchmarks predictive accuracy,
computational efficiency, and robustness in 20 buildings,
clarifying trade-offs between deep learning and gradient-
boosting approaches for practical energy forecasting.

2. Background
Global energy consumption has increased sharply in

recent decades, intensifying concerns about climate change,
dependence on fossil fuels, and sustainable resource man-
agement. Among all end-use sectors, buildings account for
an especially large and growing share of this demand, con-
tributing roughly 36-40% of global energy consumption

and carbon emissions [2, 1, 15]. This makes the building
sector both a major challenge and a clear opportunity in the
pursuit of energy conservation and decarbonisation. Thus,
improving the energy efficiency of buildings has become a
central pillar in global sustainability and carbon neutrality
initiatives.

Accurate prediction of building energy consumption is
one of the most effective strategies to support these efforts.
Energy forecasting models enable building operators, urban
planners, and policymakers to anticipate energy demand, op-
timise building operation, and design targeted energy-saving
strategies [15, 2]. By revealing the underlying consumption
patterns of buildings, such models allow for demand-side
management, load balancing, and informed decision-making
for energy-efficient design. Energy prediction also assists
smart-grid integration and renewable energy scheduling by
aligning supply with anticipated demand, thereby reducing
operational costs and improving system reliability.

The energy consumption of a building is influenced by
a complex interplay of factors, including HVAC efficiency,
occupant behaviour, equipment load, and external weather
conditions [1]. This multivariate dependency makes accu-
rate energy prediction a challenging task, requiring models
capable of capturing both temporal dynamics and nonlinear
relationships among variables. Traditional approaches (often
referred to as physical or white-box models) rely on detailed
information about the geometry, materials, and systems of
a building to simulate thermal behaviour using tools such as
EnergyPlus or TRNSYS [2, 8]. Although physically grounded
models offer interpretability and engineering transparency,
they are computationally intensive, require extensive input
data, and often struggle to reflect real-time occupant and
environmental variability [14].
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Figure 1: Various methods used for electricity consumption prediction. Methods used in this paper are in bold.

To address these limitations, researchers have increas-
ingly turned to data-driven (or black-box) approaches, which
infer relationships directly from empirical data rather than
relying on explicit physical formulations [8]. Whereas phys-
ical models depend on predefined parameters – such as
design data, thermal properties, and HVAC configurations
– data-driven models learn patterns autonomously from
historical observations of energy use and contextual factors
[16]. These methodologies can be broadly categorised into
two groups: (a) statistical models and (b) machine learning
models. Although statistical approaches remain more inter-
pretable, recent studies have increasingly favoured machine
learning techniques due to their superior predictive accuracy.
Within this domain, deep learning methods have become
particularly effective in predicting electricity consumption.
A summary of the major modelling paradigms is presented
in Figure 1.

The early applications of machine learning in building
energy forecasting established the value of data-driven meth-
ods. Yang et al. (2005) introduced adaptive online neural pre-
dictors capable of tracking operational drift [24], while Dong
et al. (2005) demonstrated that Support Vector Machines
outperform traditional statistical models in tropical climates

[4]. Li et al. (2009) expanded this comparison to multiple
variants of Artificial Neural Network (ANN), standardising
short-horizon forecasting practices [9]. Wong et al. (2010)
subsequently showed that ANNs can emulate EnergyPlus
simulations with high fidelity [23], and Zhao & Magoulès
(2012) later synthesised these developments, advocating for
rigorous evaluation and hybrid (grey-box) approaches [27].

Since then, architectural advances (particularly in recur-
rent and convolutional networks) have enabled models such
as LSTMs, BiLSTMs, and CNNs to learn long-range depen-
dencies and cyclical consumption motifs. Hybrid architec-
tures such as ConvLSTM and attention-augmented variants
further enhanced predictive capacity by integrating local
feature extraction with temporal context learning. Parallel
to these approaches, ensemble methods such as Gradient-
Boosted Trees have gained traction for their robustness,
interpretability, and efficiency, offering competitive perfor-
mance on structured tabular data typical of building energy
records.

However, despite these advances, there is still a persis-
tent methodological gap. Many studies focus narrowly on
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improving model architecture without ensuring fair compar-
ison between algorithms, consistent preprocessing, or repro-
ducible evaluation frameworks. As Zhao & Magoulès (2012)
originally cautioned, progress in model sophistication has
often outpaced methodological rigour. Recent reviews reaf-
firm this concern, emphasising the lack of standardised
pipelines that enable direct “apples-to-apples” benchmark-
ing across machine learning and deep learning methods [15].

This study seeks to address this gap by conducting a
systematic, reproducible comparison of four representative
architectures – CNN, BiLSTM, ConvLSTM, and LightGBM
– on the publicly available Building Data Genome 2 dataset.
By keeping data processing, feature engineering, and eval-
uation procedures constant, this work aims to clarify the
relative strengths, weaknesses, and practical deployment po-
tential of both deep sequence models and gradient-boosted
ensembles for short-term building energy forecasting.

3. Methodology
3.1. Data

Artificial intelligence techniques attempt to mimic the
human capacity for inductive learning; that is, machine
learning is based on learning by example [19]. The more
data provided to these architectures, the better their ability to
identify underlying patterns and generalise to unseen cases.
In contrast, limited training data constrain the accuracy
and robustness of the model. This property is particularly
pronounced in deep learning architectures that require an
even greater number of training data points to achieve the
desired accuracy and generalisation performance [20]. Con-
sequently, the availability of large, high-quality datasets is
essential for data-driven energy consumption prediction.
Several public datasets have been released to support this
effort, including the UCI Energy Efficiency Dataset [22] and
the Pecan Street Dataset [17].

The dataset used in this study is a subset of Building
Data Genome 2 (BDG2), a large-scale repository of electric-
ity consumption data collected from 1,636 non-residential
buildings in 19 sites in North America and Europe [12].
Each site, denoted by an anonymised “animal” codename
(e.g. Panther, Robin, Fox), represents a university campus
or group of buildings (Table 1). Within these sites, one or
more electrical meters were installed per building, capturing
hourly readings over two full years (2016-2017). BDG2
also includes metadata describing each building’s floor area,
primary use type, geographic location, and time zone, along
with hourly weather data from the nearest meteorological
stations. In total, the dataset contains more than 53 million
hourly electricity measurements from 3,053 meters, allow-
ing for analysis across diverse types of buildings and climate
zones.

Originally curated as part of the Building Data Genome
Project, the dataset was used in the ASHRAE Great Energy
Predictor III competition on Kaggle, designed to benchmark
machine learning approaches for long-term building energy

prediction. Given its extensive scale, diversity of build-
ing types, comprehensive metadata and open accessibility,
BDG2 has since become a benchmark dataset for developing
data-driven building energy prediction models.
3.1.1. Data processing

The data preprocessing methodology employed in this
study was designed to closely replicate the approach of Liang
et al. [10] to ensure methodological rigour and allow for a
point of comparison with previous research.

1. The five most common building types were retained to
avoid sparsely populated categories: Education (edu-
cation), Office (office), Entertainment/public assem-
bly (assembly), Lodging/residential (lodging), and
Public services (public).

2. The weather dataset was reduced to the three variables
with the fewest missing values: wind speed, dew tem-
perature, and air temperature.

3. Buildings exhibiting more than 10% missing hourly
electrical readings were excluded.

4. Buildings with a mean consumption below 20 kWh
were excluded.

5. Key temporal features, namely month, day of week
and hour, were extracted to capture cyclical patterns
in energy use.

After this cleaning process, 398 educational buildings,
201 office buildings, 100 assembly buildings, 91 lodging
buildings, and 106 public buildings remained. 20 buildings
were then selected at random to form the final dataset (Ta-
ble 2).
3.1.2. Random forest imputation

After data cleaning, a small proportion of missing val-
ues remained in several variables: electricity consumption
(2.50%), wind speed (0.74%), dew temperature (0.62%), and
air temperature (0.59%). An iterative random forest (RF)
procedure was implemented to address this. The procedure
processed each variable sequentially using all other variables
as input features to train individual RF models for each
variable with missing data. This approach follows Liang et
al.’s methodology and provides a sophisticated alternative
to simple mean or median imputation. It is particularly
effective because it can capture non-linear relationships be-
tween variables and handle the complex interactions be-
tween weather conditions, temporal patterns, and building
characteristics that influence electricity consumption.

For each target variable, missing values in the predictor
variables were initially replaced with their mean values to
create a complete training set. A random forest regressor
was then trained using 100 estimators, a maximum depth of
10, a minimum samples split of 5, and a minimum samples
leaf of 2, with parallel processing enabled for computational
efficiency. This was subsequently repeated for each predictor
variable containing missing values. The iterative nature of
this process ensures that as each variable is imputed, sub-
sequent variables benefit from the improved data quality
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Table 1
Overview of BDG2 dataset sites, their locations, and number of buildings. [12]

Site Actual site name Location Buildings

Panther Univ. of Central Florida (UCF) Orlando, FL, USA 136
Robin Univ. College London (UCL) London, UK 52
Fox Arizona State Univ. (ASU) Tempe, AZ, USA 137
Rat Washington DC - City Buildings Washington, DC, USA 305
Bear Univ. of California - Berkeley Berkeley, CA, USA 92
Lamb Cardiff - City Buildings Cardiff, UK 147
Eagle Anonymous N/A 47
Moose Ottawa - City Buildings Ottawa, ON, Canada 15
Gator Anonymous N/A 74
Bull Univ. of Texas - Austin Austin, TX, USA 124
Bobcat Anonymous N/A 36
Crow Carleton Univ. Ottawa, ON, Canada 5
Wolf Univ. College Dublin (UCD) Dublin, Ireland 36
Hog Anonymous N/A 163
Peacock Princeton University Princeton, NJ, USA 106
Cockatoo Cornell University Ithaca, NY, USA 124
Shrew UK Parliament London, UK 9
Swan Anonymous N/A 21
Mouse Ormond Street Hospital London, UK 7

Table 2
Summary of selected buildings grouped by category and site.

Category Site Building

Education

Bear Bear_education_Chana

Fox Fox_education_Heriberto

Lamb Lamb_education_Robin

Peacock Peacock_education_Robbie

Rat Rat_education_Nellie

Assembly Lamb Lamb_assembly_Librada

Rat Rat_assembly_Kimberley

Lodging

Hog Hog_lodging_Shanti

Peacock Peacock_lodging_Sergio

Peacock_lodging_Mathew

Robin Robin_lodging_Elmer

Office
Hog

Hog_office_Lizzie

Hog_office_Richelle

Hog_office_Joey

Hog_office_Elsy

Peacock Peacock_office_Annie

Robin Robin_office_Shirlene

Public
Fox Fox_public_Rhonda

Hog Hog_public_Octavia

Rat Rat_public_Margart

of previously imputed variables. This creates a cascading
effect where the accuracy of imputation improves with each
iteration. Finally, the trained model was subsequently used
to predict and replace missing values in the target variable.

The imputed values maintain statistical consistency with
the original data, with mean values remaining virtually un-
changed and standard deviations showing minimal variation,

indicating that the RF predictions preserve the underlying
data distribution characteristics (Table 3).
3.1.3. Final dataset characteristics

After completing the RF imputation procedure, the fi-
nal dataset contained 877,200 hourly observations across
11 variables with zero missing values. The final dataset
includes the hourly timestamp, building identifiers (site_id,
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Table 3
Variable means and standard deviations before and after random forest imputation.

Variable Original Mean Imputed Mean 𝚫 Mean Original Std Imputed Std 𝚫 Std

Electricity consumption 256.38 256.95 +0.57 422.05 417.08 −4.97
Wind speed 3.55 3.55 0.00 2.32 2.31 −0.01
Dew temperature 7.14 7.16 +0.02 10.29 10.27 −0.02
Air temperature 14.09 14.09 0.00 10.70 10.67 −0.03

building_id, building_type), weather variables (wind_speed,
dew_temp, air_temp), temporal features (month, dayofweek,
hour), and the target electricity consumption variable.
3.2. Classifier architectures

The four architectures we explore in this paper – CNNs,
BiLSTMs, ConvLSTMs, and LightGBM – span comple-
mentary forecasting paradigms. They capture local, sequen-
tial, hybrid, and non-neural modelling strategies, respec-
tively, allowing a balanced comparison across neural and
ensemble methods.

All model architectures presented in the following sec-
tions follow the general input-output configuration and train-
ing procedure described in Section 3.3.
3.2.1. Convolutional Neural Network

Convolutional Neural Networks (CNNs) have shown
strong performance in temporal pattern recognition by auto-
matically learning hierarchical features and capturing local
dependencies through parallel computation [3].

Our CNN network comprises three sequential 1D convo-
lutional layers with 48, 96, and 128 filters and kernel sizes of
5, 3, and 3, respectively. These layers progressively extract
short-, mid-, and long-term temporal features such as hour-
to-hour changes and daily cycles. Each convolutional layer
uses zero-padding to preserve temporal resolution, ReLU
activation, and dropout regularisation (𝑝 = 0.2) to prevent
overfitting.

Global average pooling (GAP) then aggregates features
across the temporal dimension, producing a fixed-length
128-dimensional vector that summarises the learned repre-
sentations. GAP encourages the network to learn temporally-
invariant features that are useful regardless of their position
in the input sequence, improving robustness to phase shifts
in consumption patterns.

Finally, a fully connected forecasting head with dense
layers of 128, 64, and 24 units maps these features to the
24-hour prediction horizon. The first two layers use ReLU
activation and dropout (𝑝 = 0.2), and the output layer
is linear. This progressive dimension reduction compresses
learned temporal representations into the target 24-hour
forecast horizon.

More formally, let 𝐗 ∈ ℝ𝑁×24×7 denote the input batch.
The convolutional layers progressively extract features:

𝐇(𝑙) = Dropout(ReLU(Conv1D(𝐇(𝑙−1)))) (1)

for 𝑙 ∈ {1, 2, 3}with𝐇(0) = 𝐗, output channels {48, 96, 128},
and kernel sizes {5, 3, 3} respectively. Global average pool-
ing compresses the temporal dimension:

𝐳 = 1
24

24
∑

𝑡=1
𝐇(3)[∶, 𝑡, ∶] ∈ ℝ𝑁×128 (2)

The fully connected forecasting head processes the pooled
features through three dense layers with output dimensions
128, 64, and 24 respectively, producing the final prediction
𝐲̂ ∈ ℝ𝑁×24.
3.2.2. Bidirectional Long Short-Term Memory

The BiLSTM extends the conventional LSTM by pro-
cessing input sequences in both forward and backward direc-
tions, allowing the model to capture temporal dependencies
from past and future contexts within the 24-hour observa-
tion window [5]. This property is particularly beneficial for
building energy forecasting, where consumption at a given
hour may depend on both preceding and anticipated daily
patterns.

Our architecture comprises a single bidirectional LSTM
layer with 128 hidden units per direction (256 total). Each
LSTM cell employs standard gating mechanisms to regu-
late information flow through the hidden and cell states,
enabling selective retention of long-term dependencies. For
forecasting, the final forward and backward hidden states
are concatenated, forming a 256-dimensional representation
that summarises the entire 24-hour input sequence.

This representation is passed through a three-layer fully
connected forecasting head. The first two dense layers (64
units, ReLU activation) progressively compress the temporal
representation, while the final linear layer outputs 24 real-
valued predictions corresponding to the next 24 hours of
electricity consumption.

If 𝐗 = [𝐱1,… , 𝐱24] ∈ ℝ𝑁×24×7 denotes the input batch,
then the bidirectional LSTM processes the sequence:

⃖⃗𝐡𝑡, ⃖⃗𝐜𝑡 = LSTMfwd(𝐱𝑡, ⃖⃗𝐡𝑡−1, ⃖⃗𝐜𝑡−1) (3)
⃖⃖𝐡𝑡, ⃖⃖𝐜𝑡 = LSTMbwd(𝐱𝑡, ⃖⃖𝐡𝑡+1, ⃖⃖𝐜𝑡+1) (4)

for 𝑡 ∈ {1,… , 24}, where ⃖⃗𝐡𝑡, ⃖⃖𝐡𝑡 ∈ ℝ128. The final hidden
states are concatenated:

𝐡final = [ ⃖⃗𝐡24; ⃖⃖𝐡1] ∈ ℝ𝑁×256 (5)
The fully connected forecasting head transforms this repre-
sentation through successive layers:

𝐟1 = ReLU(𝐖1𝐡final + 𝐛1), 𝐟1 ∈ ℝ𝑁×64 (6)
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𝐟2 = ReLU(𝐖2𝐟1 + 𝐛2), 𝐟2 ∈ ℝ𝑁×64 (7)
𝐲̂ = 𝐖3𝐟2 + 𝐛3, 𝐲̂ ∈ ℝ𝑁×24 (8)

where 𝐲̂ represents the predicted 24-hour consumption se-
quence.
3.2.3. Convolutional–Long Short-Term Memory

The Convolutional–LSTM (ConvLSTM) model com-
bines convolutional and recurrent layers to capture both
short-term and long-range temporal dependencies. This ar-
chitectural design is expected to provide superior feature
representations compared to either CNNs or LSTMs alone,
potentially capturing both fine-grained hourly fluctuations
and broader daily consumption trends.

The architecture begins with a single 1D convolutional
layer (16 filters, kernel size 𝑘 = 3) that serves as a
lightweight feature preprocessor, transforming the original
seven input features into 16 learned feature maps that
emphasise local temporal patterns. This convolutional pre-
processing is expected to create more informative input
representations for the LSTM by highlighting relevant local
patterns and reducing noise in the raw input features.

Formally, let 𝐗 = [𝐱1,… , 𝐱24] ∈ ℝ𝑁×24×7 denote the
input batch. The convolutional layer produces

𝐂 = ReLU(Conv1D16,𝑘=3(𝐗)) ∈ ℝ𝑁×24×16. (9)
The transformed features are then passed to a two-layer
bidirectional LSTM with 128 hidden units per direction,
producing 256-dimensional representations:

⃖⃗𝐡(𝑙)𝑡 , ⃖⃖𝐡(𝑙)𝑡 = BiLSTM(𝑙)(𝐜𝑡, ⃖⃗𝐡
(𝑙)
𝑡−1,

⃖⃖𝐡(𝑙)𝑡+1) (10)
for layers 𝑙 ∈ {1, 2} and timesteps 𝑡 ∈ {1,… , 24},
where ⃖⃗𝐡(𝑙)𝑡 , ⃖⃖𝐡(𝑙)𝑡 ∈ ℝ128. This structure enables hierarchical
learning of both short- and long-range dependencies while
incorporating context from past and future timesteps. The
final hidden states are concatenated:

𝐡final = [ ⃖⃗𝐡(2)24 ;
⃖⃖𝐡(2)1 ] ∈ ℝ𝑁×256 (11)

and passed through two ReLU-activated dense layers (64
units each) and a final linear layer to generate the 24-hour
forecast.
3.2.4. Light Gradient-Boosting Machine

The Light Gradient-Boosting Machine (LightGBM) model
serves as the non-neural baseline for short- and medium-
term electricity consumption forecasting. LightGBM is a
gradient-boosted decision tree algorithm that grows trees
leaf-wise to improve accuracy and training efficiency rel-
ative to traditional boosting methods.

The feature set comprised of both temporal and weather-
driven predictors. Lag features of 1-168 hours captured
short-term, diurnal, and weekly dependencies, while rolling
statistics (mean and standard deviation) over windows of 3-
168 hours characterised local trends and variability. Weather
variables (air temperature, dew point, wind speed) were
included with 24-hour and 168-hour lags and corresponding

rolling aggregates. Categorical attributes such as building id,
building type, month, dayofweek, and hour were encoded
using LightGBM’s native categorical handling.

The final model used 31 leaves, learning rate = 0.05,
maximum depth = 8, feature fraction = 0.9, bagging fraction
= 0.9, L2 regularisation = 2.0, and a minimum of 300
samples per leaf.
3.3. Training procedure

This section outlines the data preparation, model training
configuration, and evaluation procedures used to ensure
consistent and comparable results across all architectures.
3.3.1. Input data

All models accept input sequences of 24 hourly timesteps,
with seven features per timestep: electricity consumption,
wind speed, dew point temperature, air temperature, month,
day of week, and hour. This 24-hour lookback window
captures one complete diurnal cycle, which is essential for
learning daily consumption patterns. Each model outputs
a continuous sequence of 24 hourly consumption forecasts
corresponding to the next day.

All features were normalised using the RobustScaler im-
plementation from scikit-learn [18], which scales features
based on the interquartile range. This scaling method ensures
that the feature distributions remain robust to occasional
extreme values often caused by sensor errors or irregular
operational conditions.
3.3.2. Training configuration

Hyperparameters were selected empirically through iter-
ative testing and literature-based reference tuning to balance
accuracy and computational efficiency. The final training
configuration is summarised in Table 4.

Table 4
Final training parameters for all models.

Parameter Final value

GPU batch size 64
Optimiser Adam
Loss function Mean Squared Error (MSE)
Learning rate 0.001
Validation approach Leave-1-out 5-fold CV
Evaluation metrics RMSE, MAE, 𝑅2, CV-RMSE

All neural network models (CNN, BiLSTM, ConvL-
STM) were trained using the Adam optimiser with learning
rate 𝛼 = 0.001, minimising mean squared error loss over
8 epochs with batch size 128. The relatively modest epoch
count was selected to prevent overfitting given the limited
training sequences available per building (approximately
8,711 samples after sequence creation from 2016 data).

All models were implemented using PyTorch and trained
on Google Colab using the T4 GPU to ensure consistency in
the experiment.
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3.4. Evaluation techniques
The training strategy followed a per-building approach:

an independent model was trained for each building to
capture unique consumption characteristics and operational
behaviours.
3.4.1. Train-test split

For all architectures, the 2016 calendar year was used for
training and validation, while 2017 was held as the test set
to maintain temporal integrity (174,260 test samples).

It is common practice to divide the input data into
𝑘 folds for cross-validation, where accuracy and loss are
averaged across all 𝑘 folds to provide a reliable estimate
of the model’s performance. Here, 5-fold cross-validation
was performed on the 2016 training data. Each fold was
trained independent of random initialisation, and the model
that achieved the lowest validation mean squared error was
selected for evaluation in the 2017 test set. This cross-
validation strategy provides more reliable and generalisable
performance estimates compared to single train-validation
splits.
3.4.2. Metrics

Performance was evaluated using the Root Mean Square
Error (RMSE, Equation 12), Mean Absolute Error (MAE,
Equation 13), Coefficient of Determination (𝑅2, Equa-
tion 14), and Coefficient of Variation of RMSE (CV-RMSE,
Equation 15).

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (12)

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − 𝑦̂𝑖| (13)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(14)

CV-RMSE = RMSE
𝑦̄

× 100% (15)

where 𝑦𝑖 and 𝑦̂𝑖 denote the observed and predicted values
for sample 𝑖, respectively, 𝑦̄ is the mean of the observed
values and 𝑛 is the number of samples.

These were benchmarked against a persistence-24h base-
line model that assumes the next day’s consumption equals
the current day’s.

4. Results
4.1. Overall model performance

Table 5 presents the overall forecasting performance
of each model averaged in all 20 buildings. LightGBM
achieved the highest predictive accuracy, with a mean 𝑅2

of 0.627 and substantially lower error metrics (RMSE =
34.65 kWh; MAE = 20.56 kWh) than the deep learning
models. In comparison, the BiLSTM and ConvLSTM recur-
rent networks obtained𝑅2 values of 0.572 and 0.549, respec-
tively. The CNN lagged behind, delivering the lowest mean
𝑅2 (0.493) and the highest errors (RMSE = 43.79 kWh;
MAE = 28.89 kWh). All models produced positive and
moderate 𝑅2 scores, which explained approximately 50–
63% of the variance in hourly energy consumption. LGBM’s
performance was not only the highest on average, but also the
most consistent across buildings, with the lowest standard
deviation in 𝑅2 (0.230), whereas the CNN’s accuracy varied
more widely (standard deviation = 0.312).
4.2. Performance by building type and

consumption level
Figure 2 illustrates the mean𝑅2 by model in five building

categories. LGBM outperformed other models in four of
the five categories (Education, Lodging, Office, Public). For
example, in office buildings, LGBM achieved 𝑅2 = 0.738
compared to BiLSTM’s 𝑅2 = 0.631. Assembly buildings
were the exception, where BiLSTM led with 𝑅2 = 0.576.
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Figure 2: Model 𝑅2 performance by building type

Performance also varied with building energy usage
levels (Figure 3). The models achieved their highest 𝑅2

values in medium-to-high consumption buildings with an
average consumption between 60 and 120 kWh. For low-
usage buildings (<30 kWh), LGBM maintained a relatively
strong 𝑅2 ≈ 0.35, outperforming BiLSTM (0.30) and CNN
(0.26). In high-consumption buildings (>120 kWh), LGBM
again led with 𝑅2 ≈ 0.66.
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Table 5
Overall performance comparison across all buildings

Model 𝑅2 Mean 𝑅2 Std RMSE Mean RMSE Std MAE Mean MAE Std Training Time (s)

CNN 0.49 0.31 43.79 104.87 28.89 69.10 8.00
BiLSTM 0.57 0.24 40.01 92.86 25.84 59.67 5.60
ConvLSTM 0.55 0.25 40.92 95.71 26.45 61.62 11.06
LGBM 0.63 0.23 34.65 76.93 20.56 45.23 65.49
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Figure 3: Model 𝑅2 performance by energy usage quartile

4.3. Per-building model performance
Table 6 lists the best model per building based on 𝑅2.

LGBM was the top model in 16 of 20 buildings (80%), while
BiLSTM was the leader in 4 buildings (20%). The CNN and
ConvLSTM models did not outperform other models on any
building. LGBM achieved the highest individual 𝑅2 (0.948)
on Hog_office_Richelle and also performed well in other
public and office buildings. BiLSTM excelled on buildings
with irregular patterns, such as Lamb_assembly_Librada and
Lamb_education_Robin, indicating its strength in modelling
noisy temporal sequences.
4.4. Training time and composite score

Table 5 also reports model training times. BiLSTM had
the shortest mean training time (5.6 s), followed by CNN
(8.0 s), ConvLSTM (11.1 s) and LGBM (65.5 s). Table 7
presents a composite score that combines 𝑅2 (50%), MAE
(30%), and training time (20%) in an effort to balance both
predictive performance and efficiency. LGBM led with a
score of 0.800, followed by BiLSTM (0.603), ConvLSTM
(0.478), and CNN (0.192).

5. Discussion
The results demonstrate that both deep learning models

and gradient boosting techniques offer effective solutions for
building energy forecasting, with LightGBM showing the
most consistent and accurate overall performance. Its ability
to capture nonlinear dependencies from structured features
such as time-of-day, weather, and occupancy patterns likely
contributed to its strong 𝑅2 and low error metrics across
most building types and sizes. LGBM was particularly dom-
inant in office, public, and lodging buildings.

BiLSTM performed best in settings with highly irreg-
ular or low-magnitude consumption patterns, especially
in assembly-type buildings, where occupancy may fluctu-
ate sharply. Its strength in capturing sequential dependen-
cies allowed it to outperform LGBM in those challenging
cases. Unlike LGBM, the BiLSTM model rarely suffered
catastrophic failures and demonstrated consistent reliability
across the dataset.

Despite generally lower performance, the CNN model
still achieved meaningful gains over naive baselines, but
struggled to compete with models that better leverage tem-
poral information. The ConvLSTM model, while more so-
phisticated, did not significantly outperform the simpler
BiLSTM model in this context, suggesting that convolu-
tional complexity offered limited benefits for univariate time
series with engineered features.

From a computational standpoint, BiLSTM was found
to be the fastest to train, offering potential advantages for
applications requiring frequent model retraining. Although
LGBM had higher training times in our implementation, its
overall runtime remains acceptable (around one minute per
building) and could be reduced with parallelisation or fewer
iterations.

Our findings align with previous literature on recurrent
neural networks for time series forecasting, yet highlight
that properly tuned gradient boosting models can match or
exceed deep learning performance in many real-world en-
ergy forecasting settings. The composite score results further
support LightGBM as a balanced choice when both accuracy
and operational efficiency are considered.

The performance of these models has tangible impli-
cations for operational deployment in commercial building
portfolios. Given its favourable trade-off between accuracy
and training time, LightGBM is well suited for default
deployment scenarios where rapid retraining and scalability
are important. For mission-critical applications requiring
maximum accuracy, BiLSTM or ConvLSTM architectures
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Table 6
Best performing model per building (ranked by 𝑅2)

Building Type Mean Energy (kWh) Best Model 𝑅2 RMSE MAE

Hog_office_Richelle office 85.41 LGBM 0.95 6.01 3.64
Hog_office_Lizzie office 89.46 LGBM 0.91 9.42 6.95
Peacock_office_Annie office 76.66 LGBM 0.90 10.55 7.02
Hog_public_Octavia public 195.51 LGBM 0.86 16.08 10.35
Rat_education_Nellie education 434.94 LGBM 0.83 66.55 45.32
Robin_office_Shirlene office 31.44 LGBM 0.79 4.35 3.05
Fox_education_Heriberto education 37.14 LGBM 0.79 6.73 4.57
Fox_public_Rhonda public 107.86 LGBM 0.78 18.05 12.39
Peacock_lodging_Sergio lodging 96.28 LGBM 0.73 10.67 8.05
Robin_lodging_Elmer lodging 93.68 LGBM 0.68 18.40 10.14
Lamb_assembly_Librada assembly 31.28 BiLSTM 0.64 23.51 16.59
Hog_lodging_Shanti lodging 265.71 LGBM 0.64 42.71 24.55
Lamb_education_Robin education 38.31 BiLSTM 0.59 20.75 15.42
Hog_office_Elsy office 27.45 LGBM 0.57 5.49 2.32
Rat_assembly_Kimberley assembly 66.51 BiLSTM 0.51 14.09 7.47
Peacock_lodging_Mathew lodging 55.15 BiLSTM 0.48 11.27 6.25
Rat_public_Margart public 43.36 LGBM 0.41 21.90 6.77
Peacock_education_Robbie education 43.95 LGBM 0.36 9.68 7.59
Hog_office_Joey office 1198.98 LGBM 0.31 355.61 208.11
Bear_education_Chana education 21.88 LGBM 0.12 14.91 2.48

Table 7
Composite performance score (𝑅2: 50%, MAE: 30%, Time:
20%)

Model 𝑅2 MAE Time (s) Score

CNN 0.49 28.89 8.00 0.19
BiLSTM 0.57 25.84 5.60 0.60
ConvLSTM 0.55 26.45 11.06 0.48
LGBM 0.63 20.56 65.49 0.80

offer reliable performance, particularly for buildings with
irregular usage profiles.
5.1. Limitations

Although the models performed well on most buildings,
some facilities exhibited low predictive accuracy (𝑅2 < 0.4)
in all methods. These included small educational buildings
with high relative volatility and irregular patterns (e.g.,
Bear_education_Chana, Lamb_education_Robin). Such cases
highlight limitations in the available features or the inad-
equacy of historical trends to capture abrupt behavioural
changes. Data preprocessing strategies such as outlier re-
moval, or the incorporation of real-time occupancy or con-
trol signals, may improve outcomes in such cases.

Additionally, this study relied on a single train/test
split (2016/2017), which limits the assessment of temporal
robustness and seasonal adaptation. Cross-validation or
rolling-origin experiments could provide a more thorough
evaluation of stability over time. The evaluation also focused
exclusively on 24-hour-ahead hourly prediction; model rank-
ings may differ for other horizons (e.g., short-term 1-hour
ahead or long-term week-ahead forecasts).

Finally, the input features were engineered (e.g., calen-
dar, weather), and models did not directly process raw meter
sequences. This approach ensured fair comparison, but may
underutilise the representation learning capabilities of deep
architectures. Future work should assess models that ingest
raw or minimally processed data, including multivariate
sequences.
5.2. Future research directions

Several promising avenues remain for future work:
• Hybrid and ensemble models: Combining predic-

tions from LGBM and BiLSTM can leverage their
complementary strengths, especially in heterogeneous
building portfolios.

• Transfer learning and pretraining: Recurrent net-
works trained on large building datasets could be
fine-tuned for specific facilities, reducing the need for
extensive local training data.

• Alternative architectures: Transformers and attention-
based models have shown success in time series
forecasting and should be evaluated for energy load
prediction.

• Multi-horizon forecasting: Exploring how model
performance varies across different forecast windows
(e.g. 1h, 6h, 48h) would reveal each model’s temporal
strengths.

6. Conclusion
This study conducted a comparative evaluation of four

machine learning models – CNN, BiLSTM, ConvLSTM,
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and LightGBM – for 24-hour ahead energy forecasting
across 20 diverse commercial buildings. Using more than
170,000 hourly test samples, we demonstrated that both
deep learning and gradient boosting techniques substantially
improve prediction accuracy, with all models achieving
positive 𝑅2 values and outperforming naive baselines.

Among the models, LightGBM consistently delivered
the highest overall performance, achieving the best 𝑅2 in
80% of buildings and yielding the strongest composite score
when balancing accuracy, error and training time. Its abil-
ity to efficiently capture nonlinear relationships from engi-
neered features makes it a pragmatic and effective choice
for deployment across a wide range of building types and
consumption profiles.

BiLSTM offered comparable accuracy and emerged
as the most reliable model on buildings with irregular or
volatile consumption patterns, particularly in assembly and
low-demand facilities. Its fast training time and robustness
make it a strong alternative when interpretability or temporal
dynamics are critical. ConvLSTM and CNN performed
reasonably well but did not outperform the simpler BiLSTM
or the more interpretable LGBM in most cases.

The findings suggest that model selection should not
default to architectural complexity. Instead, it should be
informed by building-specific characteristics, operational
goals, and infrastructure constraints. For most deployment
scenarios, LightGBM offers an optimal balance of perfor-
mance and efficiency. For high-stakes applications or build-
ings with complex temporal behaviour, recurrent architec-
tures such as BiLSTM remain highly valuable.

Looking ahead, future research should investigate hy-
brid ensembles, multi-horizon forecasting, and Transformer-
based time series models. Incorporating additional features
such as occupancy, controls, or weather forecasts can further
enhance the precision of a model. As machine learning
continues to integrate into building energy systems, our
results provide actionable guidance on selecting forecasting
architectures that are accurate, scalable, and deployable.
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